Surprising benefits of ridge regularization

ETH-urich
A

PHENOMENON 1: DOUBLE DESCENT

Observed empirically for neural networks and theoretically for

highly overparameterized (d > n) linear and random feature
models [1].

Generalization does not benefit from optimal regularization
compared to interpolating the training data.

Overparameterization implicitly controls the variance

— Regularization (e.g. ridge or early stopping) is redundant.

PHENOMENON 2: ROBUST RISK OVERFITS

Observed empirically for neural networks on image data sets [2].

> Robust generalization benefits significantly from optimal regu-
larization.

Prior work has attributed this phenomenon to:

> noise in the training data

> non-smooth predictors
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PROBLEM SETTING
> We study the linear ridge regression estimator:
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» Ifd/n > 1, A\ = 0 yields the minimum />-norm interpolator:

0y := arg m@in |0]|2 such that for all ¢, (0, x;) = v;.

» Evaluation with respect to the consistent robust risk with
> perturbations:

R, () := Exp (6 — 6", X +6))7
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THEORETICAL RESULT

High-dimensional data model:

> n i.i.d. covariates xz; ~ N (0, Iy).
(0%, ;) + & with noise &; ~
> d,n — oo, d/n — 7.

> observations y; = N(0,0%1y).

Theorem. Define m(z) = l—y—2—y/ (217;7—2)2—4%2

its derivative. Let P=B+ )V — >\2(m(—>\))2
V = o*y(m(=A) = Am/(-
Then,

and let m’ be
and B = \*m/(=\),
A\)) be the asymptotic bias and variance.

A a.s 86
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Furthermore, the standard risk R(y) — B+ V a.s.

— We can compute the asymptotic standard and robust risks.
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THEORETICAL PREDICTIONS

Theoretical predictions (lines) for d,n — oo and experimental re-
sults (markers) for finite d, n.
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» Theoretical predictions match simulations for finite d, n.

» Standard risk: No overtitting thanks to implicit regularization
for large d/n.

> Robust risk: Overfitting even for noiseless data and large d/n.

INTUITIVE EXPLANATION

For noiseless observations, both risks depend only on:

> Fit in the direction of the ground truth: ||6* — H||é NIE?

» Orthogonal misfit: ||(I — II;)6,||2.
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— Robust risk punishes orthogonal misfit stronger than standard
risk, leading to Aopt > 0.
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